Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.452
Filtrar
1.
Fluids Barriers CNS ; 20(1): 28, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076875

RESUMO

BACKGROUND: Insulin transport across the blood-brain barrier (BBB) is a highly regulated, saturable process, known to be affected by many peripheral substrates including insulin itself and triglycerides. This is in contrast to insulin leakage into peripheral tissues. Whether the central nervous system (CNS) can control the rate of insulin uptake by brain remains to be determined. Insulin BBB interactions are impaired in Alzheimer's disease (AD) and CNS insulin resistance is widely prevalent in AD. Therefore, if CNS insulin controls the rate of insulin transport across the BBB, then the defective transport of insulin seen in AD could be one manifestation of the resistance to CNS insulin observed in AD. METHODS: We investigated whether enhancing CNS insulin levels or induction of CNS insulin resistance using an inhibitor of the insulin receptor altered the blood-to-brain transport of radioactively labeled insulin in young, healthy mice. RESULTS: We found that insulin injected directly into the brain decreased insulin transport across the BBB for whole brain and the olfactory bulb in male mice, whereas insulin receptor blockade decreased transport in female mice for whole brain and hypothalamus. Intranasal insulin, currently being investigated as a treatment in AD patients, decreased transport across the BBB of the hypothalamus. CONCLUSIONS: These results suggest CNS insulin can control the rate of insulin brain uptake, connecting CNS insulin resistance to the rate of insulin transport across the BBB.


Assuntos
Doença de Alzheimer , Resistência à Insulina , Masculino , Feminino , Camundongos , Animais , Insulina/farmacologia , Receptor de Insulina/fisiologia , Encéfalo/fisiologia , Sistema Nervoso Central , Barreira Hematoencefálica/fisiologia
2.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835322

RESUMO

Human InsR, IGF1R, and IRR receptor tyrosine kinases (RTK) of the insulin receptor subfamily play an important role in signaling pathways for a wide range of physiological processes and are directly associated with many pathologies, including neurodegenerative diseases. The disulfide-linked dimeric structure of these receptors is unique among RTKs. Sharing high sequence and structure homology, the receptors differ dramatically in their localization, expression, and functions. In this work, using high-resolution NMR spectroscopy supported by atomistic computer modeling, conformational variability of the transmembrane domains and their interactions with surrounding lipids were found to differ significantly between representatives of the subfamily. Therefore, we suggest that the heterogeneous and highly dynamic membrane environment should be taken into account in the observed diversity of the structural/dynamic organization and mechanisms of activation of InsR, IGF1R, and IRR receptors. This membrane-mediated control of receptor signaling offers an attractive prospect for the development of new targeted therapies for diseases associated with dysfunction of insulin subfamily receptors.


Assuntos
Desenvolvimento de Medicamentos , Receptor de Insulina , Humanos , Domínios Proteicos , Receptor de Insulina/química , Receptor de Insulina/fisiologia , Transdução de Sinais
3.
J Integr Neurosci ; 21(1): 6, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35164442

RESUMO

Insulin is known to act in the central nervous system to regulate several physiological and behavioural outcomes, including energy balance, glucose homeostasis and cognitive functioning. However, the neuronal populations through which insulin enhances cognitive performance remain unidentified. Insulin receptors are found in neuropeptide-Y (NPY) expressing neurons, which are abundant in the hypothalamus and hippocampus; regions involved in feeding behaviour and spatial memory, respectively. Here we show that mice with a tissue specific knockout of insulin receptors in NPY expressing neurons (IRl⁢o⁢x/l⁢o⁢x; NPYC⁢r⁢e⁣/+) display an impaired performance in the probe trial of the Morris Water Maze compared with control mice at both the 6 and the 12, but not at the 24 months time point, consistent with a crucial role of insulin and NPY in cognitive functioning. By 24 months of age all groups demonstrated similar reductions in spatial memory performance. Together, these data suggest that the mechanisms through which insulin influences cognitive functioning are, at least in part, via insulin receptor signaling in NPY expressing neurons. These results also highlight that cognitive impairments observed in aging may be due to impaired insulin signaling.


Assuntos
Envelhecimento/fisiologia , Disfunção Cognitiva , Hipocampo , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Receptor de Insulina/fisiologia , Envelhecimento/metabolismo , Animais , Comportamento Animal/fisiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Insulina/deficiência , Memória Espacial/fisiologia
4.
Mol Metab ; 55: 101416, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896640

RESUMO

OBJECTIVE: Adipogenesis plays an essential role in maintaining energy and hormonal balance. Cavin-2, one of the caveolae-related proteins, is abundant in adipocytes, the leading site of adipogenesis. However, the details of the roles of Cavin-2 in adipogenesis remain unknown. Here, we demonstrate the requirement of Cavin-2 for the expression and stability of IRß in adequate adipocyte differentiation. METHODS: Cavin-2 knockout (Cavin-2 KO) and wild-type (WT) mice were fed with a high-fat diet (HFD) for 8 weeks. We evaluated body weight, food intake, and several tissues. Glucose homeostasis was assessed by glucose and insulin tolerance tests. Insulin signaling in epididymal white adipose tissue (eWAT) was determined by Akt phosphorylation. In vitro study, we evaluated adipocyte differentiation, adipogenesis-related genes, and insulin signaling to clarify the relationship between Cavin-2 and adipogenesis under the manipulation of Cavin-2 expression. RESULTS: Caveolae structure decreased in eWAT of Cavin-2 KO mice and Cavin-2 knockdown 3T3-L1 cells. Cavin-2 enhanced the stability of insulin receptor (IR) through direct association at the plasma membrane in adipocytes, resulting in accelerated insulin/IR/Akt signaling-induced adipogenic gene expression in insulin-containing solution-stimulated 3T3-L1 adipocytes. IR-mediated Akt activation also enhanced Cavin-2 and IR expression. Cavin-2 knockout mice showed insulin resistance with dyslipidemia and pathological hypertrophic adipocytes after a HFD. CONCLUSIONS: Cavin-2 enhances IR stability through binding IR and regulates insulin signaling, promoting adequate adipocyte differentiation. Our findings highlight the pivotal role of Cavin-2 in adipogenesis and lipid metabolism, which may help to develop novel therapies for pathological obesity and adipogenic disorders.


Assuntos
Adipócitos/metabolismo , Proteínas de Membrana/metabolismo , Receptor de Insulina/metabolismo , Células 3T3-L1 , Adipócitos/fisiologia , Adipogenia/genética , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal , Diferenciação Celular , Dieta Hiperlipídica , Glucose/metabolismo , Insulina/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos , Proteínas de Membrana/fisiologia , Camundongos , Obesidade/metabolismo , PPAR gama/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/fisiologia , Transdução de Sinais
5.
Endocrinology ; 162(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34460911

RESUMO

Pericytes regulate vascular development, stability, and quiescence; their dysfunction contributes to diabetic retinopathy. To explore the role of insulin receptors in pericyte biology, we created pericyte insulin receptor knockout mice (PIRKO) by crossing PDGFRß-Cre mice with insulin receptor (Insr) floxed mice. Their neonatal retinal vasculature exhibited perivenous hypervascularity with venular dilatation, plus increased angiogenic sprouting in superficial and deep layers. Pericyte coverage of capillaries was unaltered in perivenous and periarterial plexi, and no differences in vascular regression or endothelial proliferation were apparent. Isolated brain pericytes from PIRKO had decreased angiopoietin-1 mRNA, whereas retinal and lung angiopoietin-2 mRNA was increased. Endothelial phospho-Tie2 staining was diminished and FoxO1 was more frequently nuclear localized in the perivenous plexus of PIRKO, in keeping with reduced angiopoietin-Tie2 signaling. Silencing of Insr in human brain pericytes led to reduced insulin-stimulated angiopoietin-1 secretion, and conditioned media from these cells was less able to induce Tie2 phosphorylation in human endothelial cells. Hence, insulin signaling in pericytes promotes angiopoietin-1 secretion and endothelial Tie2 signaling and perturbation of this leads to excessive vascular sprouting and venous plexus abnormalities. This phenotype mimics elements of diabetic retinopathy, and future work should evaluate pericyte insulin signaling in this disease.


Assuntos
Angiopoietina-2/genética , Células Endoteliais/metabolismo , Pericitos/metabolismo , Receptor de Insulina/fisiologia , Remodelação Vascular/genética , Angiopoietina-2/metabolismo , Angiopoietinas/genética , Angiopoietinas/metabolismo , Animais , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Insulina/metabolismo , Insulina/farmacologia , Camundongos , Camundongos Knockout , Pericitos/efeitos dos fármacos , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Retina/efeitos dos fármacos , Retina/metabolismo , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Remodelação Vascular/efeitos dos fármacos
6.
J Clin Invest ; 131(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34428182

RESUMO

Insulin and IGF-1 are essential for adipocyte differentiation and function. Mice lacking insulin and IGF-1 receptors in fat (FIGIR-KO, fat-specific IGF-1 receptor and insulin receptor-KO) exhibit complete loss of white and brown adipose tissue (WAT and BAT), glucose intolerance, insulin resistance, hepatosteatosis, and cold intolerance. To determine the role of FOXO transcription factors in the altered adipose phenotype, we generated FIGIR-KO mice with fat-specific KO of fat-expressed Foxos [Foxo1, Foxo3, Foxo4] (F-Quint-KO). Unlike FIGIR-KO mice, F-Quint-KO mice had normal BAT, glucose tolerance, insulin-regulated hepatic glucose production, and cold tolerance. However, loss of FOXOs only partially rescued subcutaneous WAT and hepatosteatosis, did not rescue perigonadal WAT or systemic insulin resistance, and led to even more marked hyperinsulinemia. Thus, FOXOs play different roles in insulin/IGF-1 action in different adipose depots, being most important in BAT, followed by subcutaneous WAT and then by visceral WAT. Disruption of FOXOs in fat also led to a reversal of insulin resistance in liver, but not in skeletal muscle, and an exacerbation of hyperinsulinemia. Thus, adipose FOXOs play a unique role in regulating crosstalk between adipose depots, liver, and ß cells.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Proteína Forkhead Box O1/fisiologia , Insulina/farmacologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Metabolismo Energético , Glucose/metabolismo , Insulina/sangue , Células Secretoras de Insulina/patologia , Lipídeos/sangue , Camundongos , Camundongos Endogâmicos C57BL , Receptor IGF Tipo 1/fisiologia , Receptor de Insulina/fisiologia
7.
Endocrinology ; 162(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33951176

RESUMO

Fibroblast growth factor (FGF) 21 is a member of the FGF family of proteins. The biological activity of FGF21 was first shown to induce insulin-independent glucose uptake in adipocytes through the GLUT1 transporter. Subsequently, it was shown to have effects on the liver to increase fatty acid oxidation. FGF21 treatment provides beneficial metabolic effects in both animal models and patients with obesity, type 2 diabetes mellitus (T2D) and/or fatty liver disease. In this paper, we revisited the original finding and found that insulin-independent glucose uptake in adipocytes is preserved in the presence of an insulin receptor antagonist. Using a 40-kDa PEGylated (PEG) and half-life extended form of FGF21 (FGF21-PEG), we extended these in vitro results to 2 different mouse models of diabetes. FGF21-PEG normalized plasma glucose in streptozotocin-treated mice, a model of type 1 diabetes (T1D), without restoring pancreatic ß-cell function. FGF21-PEG also normalized plasma glucose levels and improved glucose tolerance in mice chronically treated with an insulin competitive insulin receptor antagonist, a model of autoimmune/type-B insulin resistance. These data extend the pharmacological potential of FGF21 beyond the settings of T2D, fatty liver, and obesity.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Fatores de Crescimento de Fibroblastos/farmacologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Células HEK293 , Humanos , Hiperglicemia/sangue , Hiperglicemia/etiologia , Hiperglicemia/patologia , Hiperglicemia/prevenção & controle , Insulina/metabolismo , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/sangue , Obesidade/complicações , Obesidade/patologia , Receptor de Insulina/antagonistas & inibidores , Receptor de Insulina/efeitos dos fármacos , Receptor de Insulina/fisiologia , Estreptozocina
9.
Mol Biol Cell ; 31(23): 2597-2629, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877278

RESUMO

Accumulation of unfolded proteins in the endoplasmic reticulum (ER) causes ER stress and activates a signaling network known as the unfolded protein response (UPR). Here we characterize how ER stress and the UPR inhibit insulin signaling. We find that ER stress inhibits insulin signaling by depleting the cell surface population of the insulin receptor. ER stress inhibits proteolytic maturation of insulin proreceptors by interfering with transport of newly synthesized insulin proreceptors from the ER to the plasma membrane. Activation of AKT, a major target of the insulin signaling pathway, by a cytosolic, membrane-bound chimera between the AP20187-inducible FV2E dimerization domain and the cytosolic protein tyrosine kinase domain of the insulin receptor was not affected by ER stress. Hence, signaling events in the UPR, such as activation of the JNK mitogen-activated protein (MAP) kinases or the pseudokinase TRB3 by the ER stress sensors IRE1α and PERK, do not contribute to inhibition of signal transduction in the insulin signaling pathway. Indeed, pharmacologic inhibition and genetic ablation of JNKs, as well as silencing of expression of TRB3, did not restore insulin sensitivity or rescue processing of newly synthesized insulin receptors in ER-stressed cells. [Media: see text].


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Resistência à Insulina/fisiologia , Precursores de Proteínas/metabolismo , Receptor de Insulina/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos CD/fisiologia , Técnicas de Cultura de Células , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Fibroblastos , Células HEK293 , Humanos , Insulina/metabolismo , Resistência à Insulina/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Fosforilação , Precursores de Proteínas/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Receptor de Insulina/fisiologia , Transdução de Sinais , Resposta a Proteínas não Dobradas/fisiologia , eIF-2 Quinase/metabolismo
10.
J Endocrinol ; 247(1): 39-52, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32698146

RESUMO

The important role of astrocytes in the central control of energy balance and glucose homeostasis has recently been recognized. Changes in thermoregulation can lead to metabolic dysregulation, but the role of astrocytes in this process is not yet clear. Therefore, we generated mice congenitally lacking insulin receptors (Ir) in astrocytes (IrKOGFAP mice) to investigate the involvement of astrocyte insulin signaling. IrKOGFAP mice displayed significantly lower energy expenditure and a strikingly lower basal and fasting body temperature. When exposed to cold, however, they were able to mount a thermogenic response. IrKOGFAP mice displayed sex differences in metabolic function and thermogenesis that may contribute to the development of obesity and type II diabetes as early as 2 months of age. While brown adipose tissue exhibited higher adipocyte size in both sexes, more apoptosis was seen in IrKOGFAP males. Less innervation and lower BAR3 expression levels were also observed in IrKOGFAP brown adipose tissue. These effects have not been reported in models of astrocyte Ir deletion in adulthood. In contrast, body weight and glucose regulatory defects phenocopied such models. These findings identify a novel role for astrocyte insulin signaling in the development of normal body temperature control and sympathetic activation of BAT. Targeting insulin signaling in astrocytes has the potential to serve as a novel target for increasing energy expenditure.


Assuntos
Astrócitos/fisiologia , Regulação da Temperatura Corporal/fisiologia , Insulina/metabolismo , Receptor de Insulina/fisiologia , Termogênese/fisiologia , Adipócitos/fisiologia , Tecido Adiposo Marrom/fisiologia , Animais , Astrócitos/química , Diabetes Mellitus Tipo 2 , Metabolismo Energético/fisiologia , Feminino , Proteína Glial Fibrilar Ácida/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade , Receptor de Insulina/deficiência , Receptor de Insulina/genética , Fatores Sexuais , Transdução de Sinais/fisiologia
11.
Acta Trop ; 209: 105552, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32485167

RESUMO

Insulin signaling pathway is an ancient and highly conserved pathway known to play critical roles in cell growth, control and metabolic regulation. In this study, we identified and characterized two insulin receptor genes (TsIR-1316 and TsIR-4810) from Taenia solium. TsIR-1316 was grouped with E. multilocularis insulin receptor (EmIR-1) and TsIR-4810 was closer to Taenia pisiformis insulin-like growth factor receptor (TpIR) on the same branch with a very high bootstrap value. TsIR-1316 was located on the integument of larvae and adult worms, as well as the ovary of adults and eggs. Alternatively, TsIR-4810 was located in the parenchyma and reproductive organs of the adult worms. By using in vitro cultivation systems with Cysticercus pisiformis as a model, we demonstrated that anti-TsIRs-LBD antibodies could effectively block the insulin signaling pathway, resulting in reduced phosphorylation of the insulin receptor as well as lower levels of glucose uptake and glycogen synthesis. The rabbits immunized with TsIR-1316-LBD, TsIR-4810-LBD and TsIR-1316-LBD + TsIR-4810-LBD produced protection against infection of T. pisiformis as demonstrated by a 94.6%, 96% and 80% reduction of establishment of larvae, respectively. These data suggested that TsIR-1316-LBD and TsIR-4810-LBD are promising vaccine candidates or novel drug targets against swine cysticercosis.


Assuntos
Cisticercose/prevenção & controle , Receptor de Insulina/imunologia , Taenia solium/imunologia , Vacinas/imunologia , Animais , Cisticercose/tratamento farmacológico , Feminino , Coelhos , Receptor de Insulina/antagonistas & inibidores , Receptor de Insulina/genética , Receptor de Insulina/fisiologia , Suínos , Doenças dos Suínos/prevenção & controle
12.
PLoS One ; 15(3): e0229583, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32126105

RESUMO

Getting a grip on how we may age healthily is a central interest of biogerontological research. To this end, a number of academic teams developed platforms for life- and healthspan assessment in Caenorhabditis elegans. These are very appealing for medium- to high throughput screens, but a broader implementation is lacking due to many systems relying on custom scripts for data analysis that others struggle to adopt. Hence, user-friendly recommendations would help to translate raw data into interpretable results. The aim of this communication is to streamline the analysis of data obtained by the WorMotel, an economically and practically appealing screening platform, in order to facilitate the use of this system by interested researchers. We here detail recommendations for the stepwise conversion of raw image data into activity values and explain criteria for assessment of health in C. elegans based on locomotion. Our analysis protocol can easily be adopted by researchers, and all needed scripts and a tutorial are available in S1 and S2 Files.


Assuntos
Caenorhabditis elegans/fisiologia , Locomoção/fisiologia , Longevidade/fisiologia , Envelhecimento/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/fisiologia , Técnicas de Inativação de Genes , Envelhecimento Saudável/fisiologia , Humanos , Modelos Animais , Modelos Biológicos , Interferência de RNA , Receptor de Insulina/antagonistas & inibidores , Receptor de Insulina/genética , Receptor de Insulina/fisiologia , Fatores de Tempo , Imagem com Lapso de Tempo
13.
Proc Natl Acad Sci U S A ; 117(12): 6733-6740, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32156724

RESUMO

Insulin action in the liver is critical for glucose homeostasis through regulation of glycogen synthesis and glucose output. Arrestin domain-containing 3 (Arrdc3) is a member of the α-arrestin family previously linked to human obesity. Here, we show that Arrdc3 is differentially regulated by insulin in vivo in mice undergoing euglycemic-hyperinsulinemic clamps, being highly up-regulated in liver and down-regulated in muscle and fat. Mice with liver-specific knockout (KO) of the insulin receptor (IR) have a 50% reduction in Arrdc3 messenger RNA, while, conversely, mice with liver-specific KO of Arrdc3 (L-Arrdc3 KO) have increased IR protein in plasma membrane. This leads to increased hepatic insulin sensitivity with increased phosphorylation of FOXO1, reduced expression of PEPCK, and increased glucokinase expression resulting in reduced hepatic glucose production and increased hepatic glycogen accumulation. These effects are due to interaction of ARRDC3 with IR resulting in phosphorylation of ARRDC3 on a conserved tyrosine (Y382) in the carboxyl-terminal domain. Thus, Arrdc3 is an insulin target gene, and ARRDC3 protein directly interacts with IR to serve as a feedback regulator of insulin action in control of liver metabolism.


Assuntos
Arrestinas/fisiologia , Glucose/metabolismo , Resistência à Insulina , Insulina/farmacologia , Fígado/metabolismo , Receptor de Insulina/fisiologia , Animais , Membrana Celular/metabolismo , Proteína Forkhead Box O1/metabolismo , Hipoglicemiantes/farmacologia , Fígado/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação
14.
Diabetologia ; 63(3): 577-587, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31897526

RESUMO

AIMS/HYPOTHESIS: Sodium-glucose cotransporter 2 (SGLT2) inhibitors, which prevent the renal reabsorption of glucose, decrease blood glucose levels in an insulin-independent manner. We previously reported creating a mouse model of systemic inhibition of target receptors for both insulin and IGF-1 by treating animals with OSI-906, a dual insulin/IGF-1 receptor inhibitor, for 7 days. The OSI-906-treated mice exhibited an increased beta cell mass, hepatic steatosis and adipose tissue atrophy, accompanied by hyperglycaemia and hyperinsulinaemia. In the present study, we investigated the effects of an SGLT2 inhibitor, luseogliflozin, on these changes in OSI-906-treated mice. METHODS: We treated C57BL/6J male mice either with vehicle, luseogliflozin, OSI-906 or OSI-906 plus luseogliflozin for 7 days, and phenotyping was performed to determine beta cell mass and proliferation. Subsequently, we tested whether serum-derived factors have an effect on beta cell proliferation in genetically engineered beta cells, mouse islets or human islets. RESULTS: SGLT2 inhibition with luseogliflozin significantly ameliorated hyperglycaemia, but not hyperinsulinaemia, in the OSI-906-treated mice. Liver steatosis and adipose tissue atrophy induced by OSI-906 were not altered by treatment with luseogliflozin. Beta cell mass and proliferation were further increased by SGLT2 inhibition with luseogliflozin in the OSI-906-treated mice. Luseogliflozin upregulated gene expression related to the forkhead box M1 (FoxM1)/polo-like kinase 1 (PLK1)/centromere protein A (CENP-A) pathway in the islets of OSI-906-treated mice. The increase in beta cell proliferation was recapitulated in a co-culture of Irs2 knockout and Insr/IR knockout (ßIRKO) beta cells with serum from both luseogliflozin- and OSI-906-treated mice, but not after SGLT2 inhibition in beta cells. Circulating factors in both luseogliflozin- and OSI-906-treated mice promoted beta cell proliferation in both mouse islets and cadaveric human islets. CONCLUSIONS/INTERPRETATION: These results suggest that luseogliflozin can increase beta cell proliferation through the activation of the FoxM1/PLK1/CENP-A pathway via humoral factors that act in an insulin/IGF-1 receptor-independent manner.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Sorbitol/análogos & derivados , Animais , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Sinergismo Farmacológico , Técnicas de Inativação de Genes , Humanos , Imidazóis/farmacologia , Proteínas Substratos do Receptor de Insulina/genética , Células Secretoras de Insulina/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Pirazinas/farmacologia , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/fisiologia , Receptor de Insulina/antagonistas & inibidores , Receptor de Insulina/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sorbitol/farmacologia
15.
F1000Res ; 9: 598, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552476

RESUMO

Since the discovery of insulin and insulin receptors (IR) in the brain in 1978, numerous studies have revealed a fundamental role of IR in the central nervous system and its implication in regulating synaptic plasticity, long-term potentiation and depression, neuroprotection, learning and memory, and energy balance. Central insulin resistance has been found in diverse brain disorders including Alzheimer's disease (AD). Impaired insulin signaling in AD is evident in the activation states of IR and downstream signaling molecules. This is mediated by Aß oligomer-evoked Ca 2+ influx by activating N-methyl-D-aspartate receptors (NMDARs) with Aß oligomers directly, or indirectly through Aß-induced release of glutamate, an endogenous NMDAR ligand. In the present opinion article, we highlight evidence that IR and free intracellular Ca 2+ concentration [Ca 2+] i form a double-negative regulatory feedback loop controlling insulin sensitivity, in which mitochondria play a key role, being involved in adenosine triphosphate (ATP) synthesis and IR activation. We found recently that the glutamate-evoked rise in [Ca 2+] i inhibits activation of IR and, vice versa, insulin-induced activation of IR inhibits the glutamate-evoked rise in [Ca 2+] i . In theory, such a double-negative feedback loop generates bistability. Thus, a stable steady state could exist with high [Ca 2+] i and nonactive IR, or with active IR and low [Ca 2+] i, but no stable steady state is possible with both high [Ca 2+] i and active IR. Such a circuit could toggle between a high [Ca 2+] i state and an active IR state in response to glutamate and insulin, respectively. This model predicts that any condition leading to an increase of [Ca 2+] i may trigger central insulin resistance and explains why central insulin resistance is implicated in the pathogenesis of AD, with which glutamate excitotoxicity is a comorbid condition. The model also predicts that any intervention aiming to maintain low [Ca 2+] i may be useful for treating central insulin resistance.


Assuntos
Cálcio/fisiologia , Retroalimentação Fisiológica , Resistência à Insulina , Receptor de Insulina/fisiologia , Doença de Alzheimer , Ácido Glutâmico/fisiologia , Humanos , Receptores de N-Metil-D-Aspartato/fisiologia
16.
Gac Med Mex ; 155(5): 541-545, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695236

RESUMO

The metabolic syndrome describes a group of signs that increase the likelihood for developing type 2 diabetes mellitus, cardiovascular diseases and some types of cancer. The action of insulin depends on its binding to membrane receptors on its target cells. We wonder if blood insulin could travel bound to proteins and if, in the presence of hyperinsulinemia, a soluble insulin receptor might be generated. We used young adult Wistar rats (which have no predisposition to obesity or diabetes), whose drinking water was added 20 % of sugar and that were fed a standard diet ad libitum for two and six months. They were compared with control rats under the same conditions, but that had running water for consumption. At two months, the rats developed central obesity, moderate hypertension, high triglyceride levels, hyperinsulinemia, glucose intolerance and insulin resistance, i.e. metabolic syndrome. Electrophoresis of the rats' plasma proteins was performed, followed by Western Blot (WB) for insulin and for the outer portion of the insulin receptor. The bands corresponding to insulin and to the receptor external part were at the same molecular weight level, 25-fold higher than that of free insulin. We demonstrated that insulin, both in control animals and in those with hyperinsulinemia, travels bound to the receptor outer portion (ectodomain), which we called soluble insulin receptor, and that is released al higher amounts in response to plasma insulin increase; in rats with metabolic syndrome and hyperinsulinemia, plasma levels are much higher than in controls. Soluble insulin receptor increase in blood might be an early sign of metabolic syndrome.


El síndrome metabólico es un conjunto de signos que aumentan la probabilidad de desarrollar diabetes mellitus tipo 2, enfermedades cardiovasculares y algunos tipos de cáncer. La acción de la insulina depende de su unión a los receptores en la membrana de sus células diana. Para responder a la pregunta de si la insulina en la sangre podría viajar unida a proteínas y si en presencia de hiperinsulinemia podría generarse un receptor soluble de insulina, utilizamos ratas wistar (no tienen predisposición a la obesidad ni a la diabetes), adultas jóvenes, a cuya agua de consumo se adicionó 20 % de azúcar y a las que se les administró dieta estándar ad libitum, durante dos y seis meses; fueron comparadas con ratas control que tuvieron las mismas condiciones, pero con agua corriente para consumo. A los dos meses, las ratas desarrollaron obesidad central, hipertensión moderada, triglicéridos altos, hiperinsulinemia, intolerancia a la glucosa y resistencia a la insulina, es decir, síndrome metabólico. Se realizó electroforesis de las proteínas del plasma de las ratas, seguida de Western Blot para insulina y para la porción externa del receptor de insulina. Las bandas correspondientes a la insulina y la parte externa del receptor estaban al mismo nivel de peso molecular, 25 veces mayor que el de la insulina libre. Demostramos que la insulina, tanto en animales testigo como en aquellos con hiperinsulinemia, viaja unida a la porción externa del receptor (ectodominio), al cual denominamos receptor soluble de insulina, que se libera en mayor cantidad en respuesta al incremento en la insulina plasmática; en las ratas con síndrome metabólico e hiperinsulinemia, los niveles en plasma son mucho mayores que en los controles. El incremento del receptor soluble de insulina en sangre podría ser un dato temprano de síndrome metabólico.


Assuntos
Antígenos CD/sangue , Insulina/sangue , Síndrome Metabólica/sangue , Receptor de Insulina/sangue , Animais , Antígenos CD/fisiologia , Western Blotting , Diabetes Mellitus Tipo 2/etiologia , Modelos Animais de Doenças , Eletroforese , Hiperinsulinismo/sangue , Insulina/fisiologia , Resistência à Insulina , Síndrome Metabólica/etiologia , Ratos , Ratos Wistar , Receptor de Insulina/fisiologia
17.
Exp Gerontol ; 128: 110753, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31648012

RESUMO

Buckwheat trypsin inhibitor (BTI) is a low molecular weight polypeptide that can help to prevent metabolic diseases such as obesity, hyperglycemia and hyperlipidemia. Herein, the effects of recombinant BTI (rBTI) on fat accumulation in Caenorhabditis elegans were studied. rBTI prevented fat accumulation under normal and high glucose conditions, and led to significantly shorter body widths without affecting C. elegans feeding behavior. Results also indicate that rBTI altered fat breakdown, synthesis, and accumulation by altering the transcription, expression and activity of key enzymes in lipolysis and fat synthesis. In daf-2 and daf-16 mutants, rBTI did not prevent fat accumulation, indicating that rBTI activity relies on the insulin/insulin-like growth factor (IIS) pathway. Overall rBTI may regulate changes in lipolysis and fat synthesis by down-regulating the IIS pathway, which can affect fat accumulation. These findings support the application of rBTI in preventing obesity, hyperglycemia and hyperlipemia.


Assuntos
Tecido Adiposo/metabolismo , Fagopyrum/química , Insulina/fisiologia , Somatomedinas/fisiologia , Inibidores da Tripsina/farmacologia , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Restrição Calórica , Fatores de Transcrição Forkhead/fisiologia , Lipólise/efeitos dos fármacos , Receptor de Insulina/fisiologia , Proteínas Recombinantes/farmacologia , Reprodução/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
18.
Endocrinology ; 160(9): 2038-2048, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31199472

RESUMO

Insulin signaling in the central nervous system influences satiety, counterregulation, and peripheral insulin sensitivity. Neurons expressing the Glut4 glucose transporter influence peripheral insulin sensitivity. Here, we analyzed the effects of insulin receptor (IR) signaling in hypothalamic Glut4 neurons on glucose sensing as well as leptin and amino acid signaling. By measuring electrophysiological responses to low glucose conditions, we found that the majority of Glut4 neurons in the ventromedial hypothalamus (VMH) were glucose excitatory neurons. GLUT4-Cre-driven insulin receptor knockout mice with a combined ablation of IR in Glut4-expressing tissues showed increased counterregulatory response to either 2-deoxyglucose-induced neuroglycopenia or systemic insulin-induced hypoglycemia. The latter response was recapitulated in mice with decreased VMH IR expression, suggesting that the effects on the counterregulatory response are likely mediated through the deletion of IRs on Glut4 neurons in the VMH. Using immunohistochemistry in fluorescently labeled hypothalamic Glut4 neurons, we showed that IR signaling promoted hypothalamic cellular signaling responses to the rise of insulin, leptin, and amino acids associated with feeding. We concluded that hypothalamic Glut4 neurons modulated the glucagon counterregulatory response and that IR signaling in Glut4 neurons was required to integrate hormonal and nutritional cues for the regulation of glucose metabolism.


Assuntos
Transportador de Glucose Tipo 4/fisiologia , Receptor de Insulina/fisiologia , Núcleo Hipotalâmico Ventromedial/fisiologia , Animais , Glucagon/sangue , Glucose/metabolismo , Hipoglicemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
BMC Neurosci ; 20(1): 31, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208386

RESUMO

BACKGROUND: Recently, the use of traditional Chinese medicine (TCM) has become more generally accepted, including by the Food and Drug Administration. To expand the use of TCM worldwide, it is important to study the molecular mechanisms by which TCM and its active ingredients produce effects. Gastrodin is an active ingredient from Gastrodia elata Blume. It is reported that gastrodin has neuroprotective function in Parkinson's disease. But its mechanisms of neuroprotection remain not clear in PD. Here, we build two C. elegans PD model using 6-OHDA and transgenic animal to observe the changes of PD worms treated with or without gastrodin to confirm the function of gastrodin, then utilize mutant worms to investigate DAF-2/DAF-16 signaling pathway, and finally verify the mechanism of gastrodin in PD. RESULTS: Gastrodin attenuates the accumulation of α-synuclein and the injury of dopaminergic neurons, improves chemotaxis behavior in Parkinson's disease models, then recovers chemotaxis behavior by insulin-like pathway. DAF-2/DAF-16 is required for neuroprotective effect of dopamine neuron in PD. CONCLUSIONS: Our study demonstrated that gastrodin rescued dopaminergic neurons and reduced accumulation of α-synuclein protein, and the activity of gastrodin against Parkinson's disease depended on the insulin-like DAF-2/DAF-16 signaling pathway. Our findings revealed that this insulin-like pathway mediates neuroprotection of gastrodin in a Parkinson's disease model.


Assuntos
Álcoois Benzílicos/farmacologia , Proteínas de Caenorhabditis elegans/fisiologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Fatores de Transcrição Forkhead/fisiologia , Glucosídeos/farmacologia , Neuroproteção/fisiologia , Doença de Parkinson/prevenção & controle , Receptor de Insulina/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Quimiotaxia/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Relação Dose-Resposta a Droga , Fármacos Neuroprotetores/farmacologia , Oxidopamina , Doença de Parkinson/metabolismo , Transdução de Sinais/efeitos dos fármacos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
20.
J Clin Endocrinol Metab ; 104(6): 2216-2228, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30657911

RESUMO

CONTEXT: Insulin and leptin may increase growth and proliferation of thyroid cells, underlying an association between type 2 diabetes and papillary thyroid cancer (PTC). Patients with extreme insulin resistance due to lipodystrophy or insulin receptor mutations (INSR) are treated with high-dose insulin and recombinant leptin (metreleptin), which may increase the risk of thyroid neoplasia. OBJECTIVE: The aim of this study was to analyze thyroid structural abnormalities in patients with lipodystrophy and INSR mutations and to assess whether insulin, IGF-1, and metreleptin therapy contribute to the thyroid growth and neoplasia in this population. DESIGN: Thyroid ultrasound characteristics were analyzed in 81 patients with lipodystrophy and 11 with INSR (5 homozygous; 6 heterozygous). Sixty patients were taking metreleptin. RESULTS: The prevalence of thyroid nodules in children with extreme insulin resistance (5 of 30, 16.7%) was significantly higher than published prevalence for children (64 of 3202; 2%), with no difference between lipodystrophy and INSR. Body surface area-adjusted thyroid volume was larger in INSR homozygotes vs heterozygotes or lipodystrophy (10.4 ± 5.1, 3.9 ± 1.5, and 6.2 ± 3.4 cm2, respectively. Three patients with lipodystrophy and one INSR heterozygote had PTC. There were no differences in thyroid ultrasound features in patients treated vs not treated with metreleptin. CONCLUSION: Children with extreme insulin resistance had a high prevalence of thyroid nodules, which were not associated with metreleptin treatment. Patients with homozygous INSR mutation had thyromegaly, which may be a novel phenotypic feature of this disease. Further studies are needed to determine the etiology of thyroid abnormalities in patients with extreme insulin resistance.


Assuntos
Resistência à Insulina , Lipodistrofia/patologia , Mutação , Receptor de Insulina/genética , Glândula Tireoide/patologia , Adolescente , Adulto , Idoso , Criança , Cistos/patologia , Feminino , Humanos , Fator de Crescimento Insulin-Like I/análise , Fator de Crescimento Insulin-Like II/análise , Leptina/análogos & derivados , Leptina/farmacologia , Leptina/uso terapêutico , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Pessoa de Meia-Idade , Receptor de Insulina/fisiologia , Síndrome , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...